On the risk of convex-constrained least squares estimators under misspecification
نویسندگان
چکیده
منابع مشابه
Towards the study of least squares estimators with convex penalty
Penalized least squares estimation is a popular technique in high-dimensional statistics. It includes such methods as the LASSO, the group LASSO, and the nuclear norm penalized least squares. The existing theory of these methods is not fully satisfying since it allows one to prove oracle inequalities with fixed high probability only for the estimators depending on this probability. Furthermore,...
متن کاملMixing Least - Squares Estimators
We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron [17]. We show that in some cases the resulting estimator is a simple shrinkage estimator. We then apply this procedure in various statistical settings such as linear regression or adapt...
متن کاملBounds on the prediction error of penalized least squares estimators with convex penalty
This paper considers the penalized least squares estimator with arbitrary convex penalty. When the observation noise is Gaussian, we show that the prediction error is a subgaussian random variable concentrated around its median. We apply this concentration property to derive sharp oracle inequalities for the prediction error of the LASSO, the group LASSO and the SLOPE estimators, both in probab...
متن کاملOn the constrained mock-Chebyshev least-squares
The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phenomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes which elements mimic as well as possible the Chebyshev-Loba...
متن کاملConvex Total Least Squares
We study the total least squares (TLS) problem that generalizes least squares regression by allowing measurement errors in both dependent and independent variables. TLS is widely used in applied fields including computer vision, system identification and econometrics. The special case when all dependent and independent variables have the same level of uncorrelated Gaussian noise, known as ordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2019
ISSN: 1350-7265
DOI: 10.3150/18-bej1051